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Abstract. Recognizing a dose–response pattern based on heterogeneous tables of
contrasts is hard. Specification of a statistical model that can consider the possible
dose–response data-generating mechanism, including its variation across studies,
is crucial for statistical inference. The aim of this article is to increase the un-
derstanding of mixed-effects dose–response models suitable for tables of correlated
estimates. One can use the command drmeta with additive (mean difference) and
multiplicative (odds ratios, hazard ratios) measures of association. The postes-
timation command drmeta graph greatly facilitates the visualization of predicted
average and study-specific dose–response relationships. I illustrate applications of
the drmeta command with regression splines in experimental and observational
data based on nonlinear and random-effects data-generation mechanisms that can
be encountered in health-related sciences.
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1 Introduction

Investigating dose–response relationships underlying tables of empirical findings has
become extremely popular in several research disciplines such as oncology, cardiology,
endocrinology, nutrition, and public environmental health. The number of published
dose–response meta-analyses increased exponentially over the last 15 years. Scatterplots
of collected data are frequently used to inform the specification of the dose–response
model. It is unlikely, however, that naked eyes can recognize a clear dose–response
pattern. The meta-analyst has to face a limited number of estimates within each study,
positive covariance of these estimates, diverse modeling choices of the quantitative dose,
and sampling errors that may vary considerably across studies. Also, innumerable
assumptions arise from the research environment of each study. In most applications,
it is unreasonable to expect that a single dose–response mechanism operates equally in
all the studies.

To be concrete, I present an example of data available to the meta-analyst in table 1.
Distinct features of these types of data are that estimated contrasts within each study
are relative to a common referent; the common referent may change across studies; es-
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timated variances (standard errors) of the contrasts are available from the confidence
intervals (CIs), but their covariances are missing; the single value of the dose correspond-
ing to each estimated contrast is the typical dose observed in the sample (that is, the
sample mean and median); the reference value of the dose can be far away from zero;
and some descriptive statistics are usually available for each dose (that is, the sample
standard deviation of the outcome, sample size, and number of cases).

Table 1. Example of summarized dose–response data (mean dose within each quantile,
estimated mean outcome difference and its standard error, sample standard deviation,
and sample size) arising from five experimental studies

Study Dose Mean difference Standard error Standard deviation Size

1 2.09 0.00 0.00 10.20 667

1 4.42 −1.83 0.54 9.63 667

1 8.50 −0.71 0.57 10.63 666

2 2.09 0.00 0.00 10.02 334

2 4.35 −2.24 0.79 10.39 333

2 8.57 4.00 0.84 11.56 333

4 2.66 0.00 0.00 9.97 1000

4 7.33 −1.90 0.45 10.25 1000

7 1.98 0.00 0.00 9.98 167

7 4.24 2.22 1.11 10.25 167

7 8.40 19.95 2.31 28.08 166

10 2.63 0.00 0.00 10.14 1000

10 7.30 6.01 0.55 13.95 1000

Traditionally, these types of data are analyzed using a two-stage approach (Orsini
and Spiegelman 2020). A dose–response model is first fit within each study using gen-
eralized least squares (GLS) (Berrington and Cox 2003; Orsini, Bellocco, and Greenland
2006), and then estimates are combined across studies using multivariate random-effects
meta-analysis (White 2009; Jackson, Riley, and White 2011). A one-stage approach for
dose–response meta-analysis has been proposed to avoid exclusions of studies that do
not provide enough data points to estimate the hypothesized functional relationship
(Crippa et al. 2019).

Although any attempt to find a clear dose–response signal in the noisy estimates
may appear worthless, the aim of this article is to increase the understanding of a
one-stage approach, essentially a mixed-effects framework for meta-analysis (Sera et al.
2019), to evaluate what dose–response mechanism might be underlying multiple tables
of correlated contrasts.
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The article is organized as follows: explanation of weighted mixed-effects dose–
response models including estimation, hypothesis testing, and predictions (section 2);
description of the syntax of the drmeta command and its postestimation commands
(section 4); application of the model to simulated examples from nonlinear and random-
effects data-generating mechanisms (section 4); and conclusion with some final remarks
(section 9).

2 Methods

Depending on the study design and regression model used to analyze individual data,
the dependent variable γ̂i represents additive (mean difference, standardized mean dif-
ference) or multiplicative (log odds-ratio, log risk-ratio, log hazard-ratio) measures of
association.

2.1 Weighted mixed-effects dose–response model

A weighted (linear) mixed-effects dose–response model (Crippa et al. 2019) can be spec-
ified as

γ̂i = Xiβ + Zibi + εi (1)

where γ̂i is a set of differences in predicted responses relative to a reference dose xi0
for the ith study. The fixed-effects β define the average or summary dose–response
relationship of the population of studies of which I occurred to be observed. A distinct
feature of this mixed model is the absence of an intercept in Xi. The consequence is
that the fitted curve within each study has to go, as it should, through the study-specific
origin. The design matrix Xi, similarly to the dependent variable γ̂i, is centered on the
study-specific referent.

Suggestions on how to model the dose–response relationship are presented in sec-
tion 2.2. When modeling the dose with transformations such as fractional polynomials
or splines, there will be p transformations of the dose defining the design matrix.

The random-effects bi represent study-specific deviations from the average regres-
sion coefficients β. Random-effects bi are assumed to follow a multivariate normal
distribution MVN (0,Ψ). The matrix Zi is the analogous design matrix for the unob-
served random effects. Of note, because the fixed effects jointly define the shape of the
average dose–response relationship, random effects are placed on either all the regres-
sion coefficients or none of them. A random-effects model recognizes the presence of a
distribution of possible true dose–response relationships that can be described in terms
of central tendency and spread across studies.

The residual error term εi follows MVN (0,Si) with a variance–covariance matrix
Si that is assumed known in the sense that Si has been already estimated (inverse Fisher
information) together with γ̂i. The matrix Si can be available to the meta-analyst di-
rectly from the principal investigator of each study or, more commonly, approximated
using algorithms based on a mix of available descriptive and inferential statistics (Green-
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land and Longnecker 1992; Hamling et al. 2008; Orsini et al. 2012; Crippa and Orsini
2016). The matrix Si is important because it defines the weights to be used for each
study. Every study-specific set of empirical estimates is weighted by the inverse of its
estimated variance–covariance matrix.

The marginal model of (1) can be written as

γ̂i ∼ N
(
Xiβ,ZiΨZ>

i + Si

)
with ZiΨZ>

i + Si = Σi. The marginal variance Σi can be separated into two parts:
the within-study weights Si and the between-study variability Ψ.

2.2 Possible dose–response functions

The quantitative dose should be modeled according to the possible dose–response data-
generating mechanism and the questions the meta-analyst is willing to ask in light of
the available knowledge. For example, questions about the extent to which data are
compatible with a threshold effect may be articulated differently: Compared with doses
below the value k, what is the change in response for values of the dose above k? What
is the rate of change in response below and above the value of k? What is the value of
the dose k associated with the lowest response without imposing any specific functional
relationship on the data?

The meta-analyst can imagine a variety of dose transformations to capture the main
features of the true dose–response mechanism and at the same time answer the specified
research questions. Below, we specify a few possible dose–response functions involving
only one or two regression coefficients.

Linear function

The question is, What is the constant change in response associated with every one-unit
increase of the dose? The weighted mixed-effects model using a linear function (Ml)
can be written as follows:

γ̂ij = (β1 + b1i)xij + εij

Piecewise constant function

The question is, What is the sudden change in response after the knot k? A degree-0
spline of the dose xij is defined by the location of the knot k. The weighted mixed-effects
model using a constant spline function (Mc) can be written as

γ̂ij = (β1 + b1i)xij + (β2 + b2i)I(xij > k) + εij

where the regression coefficient of the degree-0 spline β2 is the vertical shift in response
after the knot k.
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Piecewise cubic spline function

The question is, What is the smooth change in response along the range of the observed
dose without imposing any specific shape? Linearity constraints are usually placed
before the first knot and above the last knot to reduce the number of regression coef-
ficients and increase stability at the tails of the dose distribution (Harrell 2001, Orsini
and Greenland 2011).

The weighted mixed-effects model using a restricted cubic spline function (Ms) can
be written as

γ̂ij = (β1 + b1i)s1(xij) + (β2 + b2i)s2(xij) + εij

with three knots (k1, k2, k3) typically located at fixed percentiles of the dose distribution.
The two splines are

s1(xij) = xij

s2(xij) =
(xij − k1)

3
+ − k3−k1

k3−k2
(xij − k2)

3
+ + k2−k1

k3−k2
(xij − k3)

3
+

(k3 − k1)2

A visualization of the fitted model is necessary to interpret the dose–response relation-
ship.

Piecewise linear function

The question is, What is the constant change in response associated with every one-unit
increase in the dose before and after the knot k? The weighted mixed-effects model using
a linear spline function (Mp) can be written as

γ̂ij = (β1 + b1i)xij + (β2 + b2i)I(xij > k)(xij − k) + εij

where the regression coefficient of the degree-1 spline β2 is the change in linear trend
after the knot k.

2.3 Estimation

We consider estimation methods based on maximum likelihood (ML). The marginal log
likelihood of the weighted mixed-effects model (1) to be maximized with respect to the
parameters of interest [p fixed effects plus q = p(p + 1)/2 variances–covariances of the
random effects] given the I tables of aggregated data is defined as

` (β, ξ) = −1

2
n log(2π)− 1

2

I∑
i=1

log |Σi (ξ) |+

− 1

2

I∑
i=1

{(γ̂i −Xiβ)
>
Σi (ξ)

−1
(γ̂i −Xiβ)}
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where n =
∑I

i=1(Ji − 1) and ξ is the vector of the variance–covariance components in
Ψ to be estimated. The maximized log likelihood can be used to compare alternative
dose–response models using the Akaike information criterion (AIC) = −2`+2(p+q), with
p and q indicating the number of fixed and variance–covariance components, respectively
(Müller, Scealy, and Welsh 2013).

ML estimates of the variance components have been shown to be biased downwards
because of estimation of the fixed-effects β. An alternative is provided by restricted
maximum-likelihood (REML) estimation that maximizes the likelihood

`R (ξ) =− 1

2
(n− p) log(2π)− 1

2

I∑
i=1

log |Σi (ξ) | −
1

2
log

∣∣∣∣∣
I∑

i=1

X>
i {Σi (ξ)}−1Xi

∣∣∣∣∣+
− 1

2

I∑
i=1

[(
γ̂i −Xiβ̂

)>
{Σi (ξ)}−1

(
γ̂i −Xiβ̂

)]

where β̂ indicates the estimates obtained by GLS. Both ML and REML estimation meth-
ods have been implemented in the drmeta command. The common-effects analysis
constrains the variance components ξ in Ψ to be all equal to 0.

2.4 Hypothesis testing

Hypothesis testing and CIs for linear combinations of regression coefficients and data
can be constructed using standard large-sample statistical inference from mixed models.
The average dose–response curve is defined by the regression coefficients β. A test of
the hypothesis H0 : β = 0 versus HA : β 6= 0 can be based on the Wald-type statistic

W = β̂V (β̂)−1β̂′

using the estimated β̂ and its variance–covariance matrix V (β̂). Assuming the null
hypothesis is true, the observed p-value is obtained by reference to a χ2 distribution
with p degrees of freedom. In the case of one regression coefficient, the Wald-type

statistic z = β̂/

√
V (β̂) is compared with a standard normal distribution and typically

shown in the output.

Depending on the functional form specified, testing part of the regression coefficients
may detect specific characteristics of the shape (that is, nonlinearity, shift in level,
change in slope). This can be done by testing H0 : β∗ = 0, where β∗ refers to the
subset of coefficients defining those characteristics. For example, if the dose has been
modeled using restricted cubic spline models with three knots (two splines), a p-value
detecting departure from a simpler straight line can be obtained by testing the coefficient
of the second spline equal to 0.
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2.5 Prediction

Estimating the average or summary dose–response relationship is an important step,
particularly when moving beyond straight lines, to present the results in tabular and in
graphical form. Let x∗ be the (v × p) design matrix obtained by applying the chosen
dose–response function (see section 2.2) to a number v of plausible values of the dose, and
let x∗

0 be the same design matrix evaluated at the chosen reference level. The rationale
for using x∗ rather than the observed Xi used to fit the model is that Xi does not
contain enough data points for a smooth plot of either the average or the study-specific
dose–response relationship. The (v×1) vector of predicted average changes in responses
is given by

γ̂∗ = (x∗ − x∗
0)β̂

with pointwise 100(1− α)% CIs obtained as follows:

(x∗ − x∗
0)β̂ ± zα/2diag{(x∗ − x∗

0)V (β̂)(x∗ − x∗
0)

>}1/2

The estimated values of γ̂∗ represent pointwise, dose x∗ versus x∗
0, average differences

in means, log risks, log odds, or log rates depending on the type of measure being
modeled. Using the invariance property of ML estimates, we obtain inference on mul-
tiplicative measures of association by exponentiating the point and interval estimates
defined above.

An advantage of the mixed-effects model is that it allows estimation of study-specific
dose–response relationships. The best linear unbiased prediction (BLUP) of b can be
computed as

b̂i = Ψ̂Z>
i Σ̂−1

i

(
γ̂i −Xiβ̂

)
The conditional study-specific dose–response relationships are obtained by adding the
fixed effects and BLUPs as follows:

γ̂∗
i = (x∗ − x∗

0)(β̂ + b̂i)

Overlaying the average γ̂∗ and study-specific γ̂∗
i allows visual appreciation of the central

tendency and spread of dose–response relationships across studies.

3 The commands

3.1 drmeta

drmeta fits parametric dose–response models based on tables of correlated contrasts.
It fits fixed-effects and random-effects mixed models using a one-stage or a two-stage
approach. Measures of association include odds ratios, risk ratios, hazard ratios, mean
differences, and standardized mean differences.
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Syntax

drmeta depvar dose vars
[
if
] [

in
] [

, se(varname) data(varname1 varname2)

id(varname) type(varname) or rr hr md smd vwls 2stage ml reml

hamling acov(varname) mcov(matrix list) noretable stddeviations nolrt

eform level(#)
]

After drmeta, specific postestimation commands are drmeta graph, drmeta gof, and
predict.

Options

se(varname) specifies an estimate of the standard error of depvar.

data(varname1 varname2) specifies variables containing the information required to
reconstruct the covariances of depvar. At each exposure level, varname1 is the
number of subjects (controls plus cases) if depvar is (log) odds ratios; the total
person-time if depvar is (log) hazard ratios; or the total number of persons (cases plus
noncases) if depvar is (log) risk ratios. The variable varname2 contains the number
of cases at each exposure level. If depvar is mean differences and standardized
mean differences total, the variable varname1 indicates the total number of persons,
and the variable varname2 contains the standard deviation of the outcome at each
exposure level. Any missing values in either of the two variables set the covariances
to 0.

id(varname) specifies the variable identifying study-specific contrasts. The reference
dose is the row with a value of 0 for the standard error. This option is required with
multiple studies.

type(varname) specifies the variable indicating the type of measure used to contrast
dose levels. It can take on value 1 for odds ratios, 2 for hazard ratios, 3 for risk
ratios, 4 for mean differences, and 5 for standardized mean differences.

or specifies that depvar be (log) odds ratios. It is used for dose–response estimation for
a single study. It is not necessary if the option id(varname) is specified.

rr specifies that depvar be (log) risk ratios. It is used for dose–response estimation for
a single study. It is not necessary if the option id(varname) is specified.

hr specifies that depvar be (log) hazard ratios. It is used for dose–response estimation
for a single study. It is not necessary if the option id(varname) is specified.

md specifies that depvar be mean differences. It is used for dose–response estimation for
a single study. It is not necessary if the option id(varname) is specified.

smd specifies that depvar be standardized mean differences. It is used for dose–response
estimation for a single study. It is not necessary if the option id(varname) is
specified.
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vwls sets the covariances of depvar within each study to 0.

2stage specifies the two-stage approach for dose–response meta-analysis. It calls the
mvmeta command. The default is the one-stage approach.

ml fits a random-effects model via ML; this is the default. All variances and covariances
of the random effects are allowed to be distinct. So if dose vars includes p variables,
then additional p(p+ 1)/2 random-effects parameters are estimated.

reml fits a random-effects model via REML. All variances and covariances of the random
effects are allowed to be distinct. So if dose vars includes p variables, then additional
p(p+ 1)/2 random-effects parameters are estimated.

hamling specifies the Hamling method (Hamling et al. 2008) to estimate the covariances
when depvar is a log relative-risk. The default is the Greenland and Longnecker
method (Greenland and Longnecker 1992; Orsini, Bellocco, and Greenland 2006).
When depvar is a mean difference or a standardized mean difference, the method
used for the covariance is described by Crippa and Orsini (2016).

acov(varname) passes the average covariance as a variable.

mcov(matrix list) passes a list of variance–covariance matrices, one for each study. It
is an advanced option where the order of the matrix list matters. The first matrix is
supposed to be related to the first set of contrasts and so on. It can be useful when
empirical contrasts and related variance–covariance matrices are available directly
from fitting a model on primary data. So this option allows the user to skip the
specification of the data() option.

noretable suppresses the random-effects parameter estimates.

stddeviations displays the random-effects and residual-error parameter estimates as
standard deviations and correlations.

nolrt suppresses the likelihood-ratio test for the unstructured variance–covariance com-
ponents. It assesses whether all random-effects parameters of the dose–response
model are simultaneously zero. Of note, the likelihood-ratio test is conservative.

eform reports coefficient estimates as exp(b) rather than b. Standard errors and CIs are
similarly transformed.

level(#) sets the confidence level, as a percentage, for CIs. The default is level(95)
or as set by set level.
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Stored results

drmeta stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(N s) number of sets of contrasts
e(df m) model degrees of freedom
e(chi2) χ2

e(p) p-value for model test
e(ll) log likelihood
e(ll c) log likelihood, comparison model
e(lrt c) likelihood-ratio test, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(r2) overall coefficient of determination (R2)
e(D) overall deviance statistic
e(p D) p-value of the overall deviance statistic
e(Q) Cochran Q test for heterogeneity (two stage)
e(Q df) degrees of freedom of the Q test
e(Q p) p-value of the Q test

Macros
e(cmd) drmeta
e(cmdline) command as typed
e(depvar) name of dependent variable
e(idname) name of sets of contrasts
e(id) values of the sets of contrasts
e(predict) program used to implement predict
e(se) name of standard errors of contrasts
e(dm) names specified in dose vars
e(method) ml or reml
e(mtype) fixed or random
e(properties) b V
e(proc) one stage or two stage

Matrices
e(b) coefficient vector of fixed effects
e(V) variance–covariance matrix of fixed effects
e(Psi) variance–covariance matrix of random effects
e(PsiC) correlation matrix of random effects
e(Sigma) variance–covariance matrices of all sets of contrasts
e(bs#) coefficient vector for the # set of contrasts (GLS) in e(id)
e(vs#) variance–covariance matrix for the # set of contrasts (GLS) in e(id)
e(X#) design matrix used for the # set of contrasts in e(id)
e(Sigma#) variance–covariance matrix for the # set of contrasts in e(id)
e(blup#) predicted random effects (BLUP) for the # set of contrasts in e(id)
e(xbu#) coefficient vector (fixed+BLUP) for the # set of contrasts in e(id)

Functions
e(sample) marks estimation sample
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3.2 drmeta graph

The drmeta graph command greatly facilitates the estimation and presentation of the
average and study-specific dose–response relationships using a common referent. The
drmeta graph command tabulates and plots the average dose–response relationship
together with CIs upon indication of a list of dose values, a referent, and the types of
transformations used to model the quantitative dose. It is particularly convenient when
modeling the dose with spline transformations.

Syntax

drmeta graph
[
, dose(numlist) ref(#) equation(string) matknots(matname)

knots(numlist) blup gls level(#) eform scatter list addplot(string)

plotopts(string) format(%fmt) twoway options
]

Options

dose(numlist) specifies the values of the dose at which to estimate differences in pre-
dicted responses.

ref(#) specifies the reference value of the dose; this value is not necessarily included
in dose(numlist).

equation(string) specifies the mathematical transformations of the dose d used in the
previously fitted dose–response model. It is relevant only if matknots(matname) or
knots(numlist) has not been specified. Example 1: equation(d) means that the
dose was modeled assuming a linear function. Example 2: equation(d d2) means
that the dose was modeled with a quadratic function. Example 3: equation(d
ln(d)) means that the dose was modeled with d and the natural logarithm of d.

matknots(matname) specifies the matrix of knots used to create restricted cubic splines.
This can be easily obtained from the stored results of the mkspline command.

knots(numlist) specifies a list of knots used to create the restricted cubic splines. It is
an alternative to the option matknots(matname).

blup shows conditional study-specific lines arising from the estimated random-effects
model (best linear unbiased prediction).

gls shows study-specific lines estimated separately using GLS.

level(#) sets the confidence level as a percentage for CIs. The default is level(95)
or as set by set level.

eform exponentiates the estimated differences in predicted responses.

scatter shows a scatterplot rather than a line plot (default).

list lists the estimated differences in predicted responses.
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addplot(string) specifies the equation of the model to be plotted in terms of the dose d.
It can be useful to overlay a line or curve on the graph of the previously fitted
model. Example 1: You previously fit a spline model, and you want to add a line
addplot(b 1 ∗ (d − 10)), representing the change in predicted outcome relative to
the dose value of 10 according to a linear function. Example 2: You previously fit a
linear response model, and you want to add a curve addplot(b 1 ∗ (d− 10) + b 2 ∗
(d2 − 100)), representing the change in predicted outcome relative to the dose value
of 10 according to a quadratic function.

plotopts(string) controls the line options affecting the added plot with the option
addplot(string).

format(%fmt) specifies the display format for presenting numbers. format(%3.2f) is
the default; see help format.

twoway options are most of the options documented in [G] twoway options, including
options for titles, axes, labels, schemes, and saving the graph to disk. However, the
by() option is not allowed.

3.3 drmeta gof

The drmeta gof command provides tools (deviance test, R2) to evaluate the goodness
of fit in dose–response meta-analysis (Discacciati, Crippa, and Orsini 2017). It is a
postestimation tool of the drmeta command.

Syntax

drmeta gof
[
, r2s opvdplot(dose var,

[
xb | xbs | fitted

]
) drvdplot(dose var)

dovpplot twoway options
]

Options

r2s shows the study-specific coefficient of determination (R2).

opvdplot(dose var,
[
xb | xbs | fitted

]
) plots the observed and specified predicted val-

ues versus the specified dose. The default is to use study-specific predictions using
GLS (xbs). See section 3.4.

drvdplot(dose var) plots the decorrelated residuals versus the specified dose.

dovpplot plots decorrelated observed contrasts versus predicted contrasts.

twoway options are most of the options documented in [G] twoway options, including
options for titles, axes, labels, schemes, and saving the graph to disk. However, the
by() option is not allowed.
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3.4 predict

The postestimation command predict after drmeta creates a new variable containing
the requested predictions using study-specific reference values.

Syntax

predict stubname
[
, xb xbs fitted reffects

]
Options

xb calculates the linear prediction for the fixed portion of the model only; this option
is the default.

xbs calculates the linear prediction using a study-specific coefficient vector estimated
using GLS.

fitted calculates fitted values, that is, a fixed-portion linear prediction plus contribu-
tions based on predicted random effects.

reffects predicts BLUPs of random effects.

4 Examples

Weighted mixed-effects models are illustrated using three examples based on tables of
mean differences, odds ratios, and hazard ratios estimated from nonlinear and random-
effects data-generating mechanisms. Tables are generated using a Monte Carlo simula-
tion. Knowing the values of the parameters that govern the central tendency and spread
of the dose–response relationships across studies helps to evaluate the results obtained
in any given sample of studies.

4.1 Tables of mean differences

Consider the tables of summarized data from 10 hypothetical studies investigating the
association between a quantitative dose and a quantitative outcome. The dose, ran-
domly assigned to each individual, is positive and skewed to the right (χ2 with 5 de-
grees of freedom). Each principal investigator has categorized the quantitative dose
into quantiles and conducted statistical inference on differences in population mean
outcomes across quantiles of the dose using a linear regression model. The 10 studies
are sampled from a random-effects nonlinear data-generating mechanism. We simu-
lated a J-shaped [−2(x − 5) + 0.2(x2 − 52)] dose–response relationship for the average
study. Given this shape, the lowest mean outcome is expected to be at the mean dose of
x = −(−2)/{2(0.2)} = 5 units. There is no single true dose–response relationship un-
derlying all the studies. Every study provided an estimate of its own true dose–response
relationship with a certain sampling error. The inferential objective of the meta-analyst
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can be to determine the tendency and spread of all of these true dose–response re-
lationships. The empirical estimates and descriptive statistics obtained by the study
investigators are useful to the extent they can contribute to the understanding of the
features of the distribution of dose–response relationships.

Let’s pretend we do not know the data-generating mechanism described above. The
10 observed studies vary according to sample size, dose categorization, and mean dose of
the reference category. A total of 13,500 individuals have been involved in these studies
contributing to the estimation of 24 mean outcome differences. Moving away from the
bottom category of the dose (about 2 units), some studies estimated a lower mean
outcome, some other studies a higher mean outcome, and some studies no substantial
change (figure 1). The visual impression is of a large variation in the dose–response
association across studies.
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Figure 1. Graph of the study-specific estimated mean differences (95% CIs, capped
spikes) arising from 10 studies of different sizes. Marker size is inversely related to its
variance. The shaded area is the distribution of the dose in the population.

It can be hard for the meta-analyst to imagine what kind of functional relationship
might be underlying these tables of empirical estimates if the only knowledge available
is the collected data. For simplicity of analysis and interpretation, a common strategy
used by meta-analysts is a linear function (Ml) for the dose.
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. use md_drm

. drmeta md dose, se(semd) data(n sd) id(id) type(type_md) ml

One-stage random-effects dose-response model Number of studies = 10
Optimization = ml Number of obs = 19

AIC = 240.04 Model chi2(1) = 0.73
Log likelihood = -118.02019 Prob > chi2 = 0.3943

md Coef. Std. Err. z P>|z| [95% Conf. Interval]

dose .3138377 .3683861 0.85 0.394 -.4081857 1.035861

Random-effects parameters Estimate

var(dose,dose) 1.334027

LR test vs. no random-effects model = 571.30704 Prob >= chi2(1) = 0.0000

Every one-unit increase of the dose is estimated to increase, on average, the mean
outcome by β̂1 = 0.31 units (95% CI: [−0.41, 1.04]). The estimated variance of the ran-
dom effects is large, suggesting a strong variability of the study-specific linear trends.
Data appear to be compatible with a flat dose–response association (z = 0.85, p-value =
0.394). To some health researchers, a linear association with a large p-value, strong het-
erogeneity, and no clear visual pattern in the estimates may discourage further analysis
and could be the beginning of stratified analysis, quality analysis, and wondering about
possible explanations for these heterogeneous observed data. Although we cannot ex-
clude that the dose–response relationship can be actually linear for some studies, data
may also be compatible with the hypothesis of higher mean outcomes at the dose ex-
tremes relative to the middle range of the dose (that is, U/J-shaped). Such a shape
would be unlikely to be discovered by forcing a linear dose–response function in all
the studies. Therefore, we now allow a curvilinear relationship to be detected using
restricted cubic splines with three knots of the dose (Ms). When the likelihood of the
table of empirical estimates using a spline function is much larger than the ones ob-
tained with the linear function, there would be an indication of departure from a linear
function. Because the linear function is a special case of the restricted cubic spline
function, one could also test the compatibility of the data with a simpler linear function
testing the hypothesis that the regression coefficient of the second spline is equal to 0.
The result of the Wald-type test is shown in the output below.



N. Orsini 335

. mkspline doses = dose, nk(3) cubic displayknots

knot1 knot2 knot3

dose 2.086257 4.350319 8.50176

. matrix knots = r(knots)

. drmeta md doses1 doses2, se(semd) data(n sd) id(id) type(type_md) ml

One-stage random-effects dose-response model Number of studies = 10
Optimization = ml Number of obs = 19

AIC = 107.34 Model chi2(2) = 86.21
Log likelihood = -48.669605 Prob > chi2 = 0.0000

md Coef. Std. Err. z P>|z| [95% Conf. Interval]

doses1 -1.26233 .1895313 -6.66 0.000 -1.633805 -.8908556
doses2 2.76801 .5284361 5.24 0.000 1.732295 3.803726

Random-effects parameters Estimate

var(doses1,doses1) .1336763
var(doses2,doses2) 2.137952
cov(doses1,doses2) .5345965

LR test vs. no random-effects model = 615.5756 Prob >= chi2(3) = 0.0000

The maximized log likelihood of a mixed-effects model using the restricted cubic
spline function (`s = −49) of the dose is, in absolute terms, about two-fifths of the
maximized log likelihood of the linear function (`l = −118). Even considering the
higher number of estimated parameters of the spline function (two coefficients + three
variance–covariance of random effects) relative to the linear function (one coefficient +
one variance of random effects), the AIC of the spline function (AICs = 107) is about
half the one of the linear function (AICl = 240). Assuming the average dose–response
function is truly linear, a Wald-type statistic being as or more extreme than observed
would rarely occur (H0 : β2 = 0, z = 5.24, p-value < 0.001). That said, we still have no
idea of the possible shape relating the dose to the mean outcome. Therefore, we next
present graphically the estimated summary dose–response relationship using the overall
dose of five units as referent (figure 2).
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Figure 2. Estimated summary dose–response relationship (solid line) with 95% CIs
(short-dashed lines) based on 10 tables of empirical estimates. Data were fit with
a weighted mixed-effects model using restricted cubic splines for the dose with three
knots located at percentiles (10th, 50th, 90th) of the overall dose distribution. The
long-dashed line is the true summary dose–response relationship. The dose value of five
units served as a referent.

Based on the spline model, the predicted summary mean outcome difference com-
paring the generic dose level x∗ versus the reference of five units, compactly indicated
with γ̂∗x∗,5, is given by

γ̂∗x∗,5 = −1.26{s1(x∗)− s1(5)}+ 2.77{s2(x∗)− s2(5)}

with x∗ ranging in the plausible range going from 2 to 10 units. The values of the
first and second spline at the chosen referent are s1(5) = 5 and s2(5) = 0.59. The
pointwise uncertainty of γ̂∗x∗,5 is a function of the dose values being compared and the
variance–covariance of the estimated regression coefficients

Var(γ̂∗x∗,5) = {s1(x)− 5}2Var(β̂1) + {s2(x)− 0.59}2Var(β̂2)

+2{s1(x)− 5}{s2(x)− 0.59}Cov(β̂1, β̂2)

Focusing on the left tail of the dose distribution, we find the mean outcome difference
comparing 2 versus 5 units of the dose is given by γ̂∗2,5 = −1.26(2−5)+2.77(0−0.59) =

2.15 with an estimated Var(γ̂∗2,5) = 0.48; the 95% CI is 2.15± 1.96
√
0.48 = [0.79, 3.51].

The postestimation command drmeta graph greatly facilitates the estimation and
presentation of the summary dose–response relationship. For example, a table and
graph (figure 2) of summary mean outcome differences comparing values of the dose
ranging from 2 to 10 relative to 5 units is obtained typing the following code:
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. drmeta_graph, matk(knots) dose(2(1)10) ref(5) list

_x _t1 _t2 _xb _lb _ub
2 2 0 2.15 0.79 3.51
3 3 .0185358 0.94 -0.09 1.97
4 4 .1702902 0.10 -0.52 0.72
5 5 .5907288 0.00 0.00 0.00
6 6 1.287951 0.67 -0.20 1.53
7 7 2.184068 1.89 -0.04 3.81
8 8 3.199579 3.43 0.34 6.53
9 9 4.256619 5.10 0.79 9.40

10 10 5.315334 6.77 1.24 12.29

Figure 2 shows how the predicted summary dose–response mechanism based on
the spline model is capturing the main features of the mechanism (long-dashed line)
underlying the empirical studies, that is, a higher mean outcome at the extremes of the
dose distribution and a minimum mean outcome at about five units of the dose. The
block-diagonal matrix of weights Si associated with the empirical estimates in all the
specified mixed models is available as e(Sigma).

4.2 Tables of adjusted odds ratios

Let’s now consider tables of summarized data from 10 hypothetical observational
prospective studies investigating the association between the quantitative dose (that
is, body mass index [BMI], kg/m2) and the occurrence of a binary outcome (that is,
alive/death status during 10 years follow-up time). Baseline age, a potential confound-
ing variable, is associated with a higher mean BMI and is associated with higher mortality
odds regardless of the specific values taken by the BMI. Furthermore, the age-adjusted
odds ratio relating BMI to mortality is J shaped, that is, e−2.3(x−24)+0.05(x2−242) (that is,
higher mortality at the extremes, particularly on the right tail, of the BMI distribution).
Each principal investigator categorized BMI into 2/3 quantiles and conducted statis-
tical inference on age-adjusted mortality odds ratios comparing BMI categories using
logistic regression models. The sets of empirical estimates arise from a random-effects
data-generating mechanism.

A plot of the study-specific estimates (figure 3), further complicated by the arbitrary
reference category, is unlikely to provide clear insights on either the study-specific or the
summary dose–response relationship between BMI and mortality odds upon adjustment
for age.
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Figure 3. Graph of the study-specific estimated age-adjusted mortality odds ratios (95%
CIs, capped spikes) according to BMI levels arising from 10 studies of different sizes. The
dark-gray symbols indicate the study-specific reference values. Marker size is inversely
related to its variance. The shaded area is the distribution of the dose in the population.

We model age-adjusted log odds-ratios as a function of BMI. Using a linear function
(Ml) to model BMI in relation to age-adjusted mortality odds ratios, every increment
of 3 kg/m2 in BMI is associated, on average, with a 48%, e0.13(3), higher age-adjusted
mortality odds.

. use or_drm, clear

. drmeta b bmi, se(seb) data(n case) type(type) id(id) ml

One-stage random-effects dose-response model Number of studies = 10
Optimization = ml Number of obs = 13

AIC = 50.23 Model chi2(1) = 134.11
Log likelihood = -23.116302 Prob > chi2 = 0.0000

b Coef. Std. Err. z P>|z| [95% Conf. Interval]

bmi .1302349 .011246 11.58 0.000 .1081931 .1522767

Random-effects parameters Estimate

var(bmi,bmi) .0005414

LR test vs. no random-effects model = 3.0684958 Prob >= chi2(1) = 0.0798

Because a constant change in age-adjusted mortality odds throughout the BMI range
can be unrealistic, we next allowed a curvilinear relationship to be detected by using a
restricted cubic spline function (Ms) with three knots at fixed percentiles (10th, 50th,
90th) of the BMI distribution.
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. mkspline bmis = bmi, nk(3) cubic displayknots

knot1 knot2 knot3

bmi 22.03318 24.51042 27.0792

. matrix knots = r(knots)

. drmeta b bmis1 bmis2, se(seb) data(n case) type(type) id(id) ml

One-stage random-effects dose-response model Number of studies = 10
Optimization = ml Number of obs = 13

AIC = -3.75 Model chi2(2) = 236.95
Log likelihood = 6.877037 Prob > chi2 = 0.0000

b Coef. Std. Err. z P>|z| [95% Conf. Interval]

bmis1 -.1190594 .0342939 -3.47 0.001 -.1862741 -.0518446
bmis2 .341312 .0442469 7.71 0.000 .2545897 .4280343

Random-effects parameters Estimate

var(bmis1,bmis1) .0005846
var(bmis2,bmis2) .0000788
cov(bmis1,bmis2) -.0002146

LR test vs. no random-effects model = 1.4161565 Prob >= chi2(3) = 0.7018

The strong reduction in AIC from 50 to -4 and the large value of the Wald-type statis-
tic (H0 : β2 = 0, z = 7.71, p-value < 0.001) indicate a departure from a simpler trend.
A visualization of the summary dose–response relationship based on the spline function
and the true summary dose–response mechanism is presented in figure 4. The predicted
dose–response relationship between BMI and age-adjusted mortality odds appear to be
J shaped with a minimum at around 23.5–24 kg/m2, which is not far from what the
meta-analysts can expect based on the true dose–response mechanism underlying the
population of studies.
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Figure 4. Estimated summary dose–response relationship (solid line) with 95% CIs
(short-dashed lines) based on 10 tables of empirical estimates. Data were fit with a
weighted mixed-effects model using restricted cubic splines for BMI with three knots
located at percentiles (10th, 50th, 90th) of its distribution. The true summary age-

adjusted dose–response mechanism (long-dashed line), e−2.3(x−24)+0.05(x2−242), is shown
for comparison. The value of 24 kg/m2 served as the referent.

4.3 Tables of adjusted hazard ratios

Let’s now consider tables of summarized data from 30 hypothetical prospective co-
hort studies investigating the association between baseline brisk walking, measured in
hours/week, and time until death, or end of follow-up (10 years), whichever came first.
Age is inversely associated with brisk walking and positively associated with higher
mortality rates independently of brisk walking levels. Furthermore, the true summary
age-adjusted mortality hazard ratio is decreasing with higher walking levels with a
threshold effect at two hours per week; that is e−0.5(x−2)+0.5(x>2)(x−2). Principal in-
vestigators categorized brisk walking into 2/4 quantiles. Age-adjusted mortality hazard
ratios comparing brisk walking categories were estimated using a Cox regression model.
Each set of empirical estimates arises from a random-effects data-generating mechanism.

The scatterplot of the estimates shown in figure 5 may suggest an overall inverse
association between brisk walking and age-adjusted mortality rates. The threshold effect
at two hours per week, however, can be hardly guessed in figure 5. There are not even
empirical estimates between 1.5 and 2.4 hours per week, exactly in the range where the
leveling off is occurring.
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Figure 5. Graph of the study-specific estimated age-adjusted mortality hazard ratios
(95% CIs, capped spikes) according to walking levels arising from 30 studies of different
sizes. The dark-gray symbols indicate the study-specific reference values. Marker size
is inversely related to its variance. The shaded area is the distribution of the dose in
the population.

In this example, we directly specify the piecewise linear spline model (Mp) with a
knot at two hours per week to dedicate some attention to useful postestimation com-
mands such as lincom and drmeta’s predict.

. use hr_drm, clear

. generate walkplus = (walk>2)*(walk-2)

. drmeta b walk walkplus, se(seb) data(n case) type(type) id(id) ml

One-stage random-effects dose-response model Number of studies = 30
Optimization = ml Number of obs = 61

AIC = 37.55 Model chi2(2) = 110.27
Log likelihood = -13.773298 Prob > chi2 = 0.0000

b Coef. Std. Err. z P>|z| [95% Conf. Interval]

walk -.4678671 .0536744 -8.72 0.000 -.573067 -.3626673
walkplus .5432787 .0626325 8.67 0.000 .4205213 .666036

Random-effects parameters Estimate

var(walk,walk) .0766958
var(walkplus,walkplus) .0507463
cov(walk,walkplus) -.0136841

LR test vs. no random-effects model = 2713.6 Prob >= chi2(3) = 0.0000
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Below 2 hours per week, every increment of 30 minutes per week in brisk walking is
estimated to reduce the age-adjusted mortality rate by 21% (HR = e−0.47(1/2) = 0.79;
95% CI = e−0.47(1/2)±1.96(0.054)(1/2) = [0.75, 0.83]). Above 2 hours per week, every
increment of 30 minutes per week in brisk walking is estimated to increase, on average,
the age-adjusted mortality rate by 4% [HR = e(−0.47+0.54)(1/2) = 1.04]. Statistical
inference for a combination of parameters and data, such as e(β1+β2)(1/2), can be easily
obtained with the lincom postestimation command.

. lincom (walk+walkplus)*1/2, eform

( 1) .5*walk + .5*walkplus = 0

b exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(1) 1.038426 .0340727 1.15 0.250 .9737464 1.107401

One could be interested in age-adjusted hazard ratios associated with specific lev-
els of brisk walking. For example, those persons who rarely engage in brisk walking
(0 hours per week) are expected to have, in an average study, a 2.5-fold increase (95%
CI: [2.1, 3.1]) in age-adjusted mortality relative to 2 hours per week.

. lincom walk*(0-2), eform

( 1) - 2*walk = 0

b exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(1) 2.549085 .2736411 8.72 0.000 2.065422 3.146007

Various types of predicted values can be obtained after drmeta with the predict

postestimation command. Note that in our context, the predicted values of a mixed-
effects model with no intercept are changes in predicted responses relative to the study-
specific referent. At the study level, the drmeta gof command helps visualization of
observed and predicted data.

Overlaying predicted summary and study-specific dose–response relationships can
help one to appreciate the central tendency and variation across studies. This is achieved
by adding estimated regression coefficients, e(b), with the contributions based on the
realizations of the random-effects e(blup#) for the generic study number # and then
plotting using a common reference value across all the studies. This information is
available right after the drmeta command in the form of returned matrices or via the
predict command.
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For example, study 20, as compared with the average study, is compatible with a
stronger (−0.9 > −0.5) inverse linear relationship below 2 hours per week and stronger,
because (−0.9+0.4) > (−0.5+0.5), inverse linear relationship above 2 hours per week.

. matrix list e(blup20)

e(blup20)[1,2]
walk walkplus

blup_20 -.44304539 -.1549011

. matrix beta20 = e(b)+e(blup20)

. matrix list beta20

beta20[1,2]
walk walkplus

blup_20 -.91091252 .38837757

The 30 study-specific dose–response relationships can be easily plotted using the
blup option of the drmeta graph command (figure 7). Under a random-effects data-
generating mechanism underlying the studies and tables fit using a weighted mixed-
effects model, the meta-analyst can expect approximately an equal spread of study-
specific dose–response relationships below and above the average trend. As an example,
consider brisk walking levels above 2 hours per week, where about 50% of the studies
show an increasing trend and the other 50% of the studies show a decreasing trend.
This is not a surprise given the random variation across studies with a true summary
age-adjusted hazard ratio equal to 1, that is, a leveling off at 2 hours per week.

Note that the variation of the study-specific dose–response relationships (figure 6)
greatly, and correctly, exceeds the uncertainty of the average dose–response response
relationship (figure 7). For example, returning to the age-adjusted hazard ratio of 0
versus 2 hours per week (just draw a vertical line at 0), there are two studies compatible
with no association (HR ≈ 1) and one study compatible with a very strong positive
association (HR = 8). The majority of the studies (28/30 = 0.93) have age-adjusted
mortality hazard ratios above 1 when comparing 0 versus 2 hours per week of brisk
walking. Considering the variance of the random effects associated with the slope before
2 hours per week, the meta-analyst can expect the middle 95% of the studies to have
an age-adjusted mortality hazard ratio comparing 0 versus 2 hours per week between

0.9 and 8; e−0.47(0−2)±1.96
√

0.077(0−2)2 .
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Figure 6. Estimated summary dose–response relationship (solid line) with 95% CIs
(short-dashed lines) based on 30 tables of empirical estimates. Data were fit with
a weighted mixed-effects model with piecewise linear splines for brisk walking with
one knot located at 2 hours per week. The true summary age-adjusted dose–response
mechanism (long-dashed line), e−0.5(x−2)+0.5(x>2)(x−2), is shown for comparison. The
value of 2 hours/week served as the referent.
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Figure 7. Study-specific dose–response relationships (light gray), summary dose–
response relationship (black) based on 30 tables of empirical estimates. Data were fit
with a weighted mixed-effects model with piecewise linear splines for brisk walking with
one knot located at 2 hours per week. The true summary age-adjusted dose–response
mechanism (long-dashed line), e−0.5(x−2)+0.5(x>2)(x−2), is shown for comparison. The
value of 2 hours/week served as the referent.



N. Orsini 345

5 Conclusion

In this article, I described the main features of weighted mixed-effects models suit-
able for statistical inference on dose–response relationships based on tables of empirical
estimates. It can be applied to a variety of research fields where additive and multi-
plicative measures of association for quantitative predictors are consistently summarized
in tabular forms. Tables of empirical estimates can arise from either experimental or
observational study designs. Different types of dose transformations can be specified
according to the research questions the meta-analyst is willing to ask in light of the
data. Although the major focus of inference is usually the average dose–response rela-
tionship in a population of studies, mixed models allow examination of the spread of
the functional relations across studies.

The drmeta command is illustrated using three hypothetical yet realistic examples
that can be encountered in health-related sciences. These examples highlighted the im-
portance of using an appropriate statistical model to move beyond descriptive statistics
of empirical estimates and capture the main characteristics of the dose–response data-
generating process. Scatterplots of the empirical estimates are generally not sufficient
to acquire some knowledge about the central tendency and spread of dose–response
relationships across studies.

Regression splines of a quantitative predictor, such as piecewise constant, linear,
and cubic, are flexible tools that can answer a variety of questions. Spline functions are
not the only modeling strategy. Applications of the drmeta command are not limited
to the use of spline functions; the user can specify other basis functions for the dose.
The meta-analyst, however, should keep in mind that the number of parameters to be
estimated grows rapidly with the number of dose transformations. If the number of
parameters is too large relative to the available data, the estimation procedure will take
longer and may fail to converge. In our examples, we intentionally used a maximum of
two regression coefficients, making a total of five parameters to be estimated. Informa-
tion criteria, such as the AIC based on ML, can be used to choose between alternative
models.

Although random-effects models are routinely used in quantitative reviews of dose–
response data, it is quite rare to see any use of the estimated random effects in applied
research. Furthermore, plotting curvilinear relationships is difficult with only few data
points available within each study. The drmeta graph postestimation command has
been developed to facilitate the visualization and comparison of predicted average and
study-specific dose–response relationships using a common reference dose.

The major challenge for the meta-analyst is to understand that modeling changes
in expected responses is not the same as modeling expected responses. Changes in
expected responses are themselves the results of a modeling choice by the principal
investigator in any given study. The task of using the results of a piecewise constant
dose–response function, just another way of calling categorization of the dose, to inform
the specification of another dose–response function is unlikely to be straightforward.
Although a statistical package can facilitate a variety of calculations and prevent possible
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mistakes, anyone interested in using the drmeta command for scientific inference is
encouraged to use subject-matter knowledge in model specification and to acquire some
familiarity with basic statistical principles.

6 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-2

. net install st0638 (to install program files, if available)

. net get st0638 (to install ancillary files, if available)
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